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Abstract

Cardiac arrest (CA) may cause severe brain damage,
cognitive impairments and death. Monitoring neurological
recovery after hospitalization is critical to provide suitable
treatment. In this study, we aim to develop an algorithm
to aid in neurological recovery classification. The dataset
used for this purpose includes 1020 patients and contains
both continuous sensor measurements, taken from 0 to 72
hours after the CA, and structured data. More specifi-
cally the dataset is split into a training set (60%), vali-
dation set (10%) and undisclosed test set (30%). The de-
veloped model uses a one-dimensional convolutional neu-
ral network to extract features from 5-minute time series
segments, fed into a recurrent neural network, to capture
temporal information and provide adaptability in record-
ing length. The output features are then merged with em-
bedded patient metadata in a fully connected layer, for the
final classification of neurological outcome. The project is
part of the George B. Moody PhysioNet Challenge 2023,
where our team (EEG-Attackers) achieved a challenge
score and rank on the undisclosed test dataset of 0.16 (30),
0.13 (33), 0.11 (34) and 0.12 (35) using recordings from
the first 12, 24, 48 and 72 hours after CA.

1. Introduction

Cardiovascular disease accounts for approximately 17
million deaths annually, and about 40-50% of these are
caused by sudden CA [1]. While the survival rate to hos-
pital admission, for patients having out-of-hospital cardiac
arrest (OHCA), is approximately 22%, the survival rate
1 year after the hospital stay is around 7,7% [2]. In pa-
tients who survive the initial resuscitation, brain injury is
the most common cause of death [3], and patterns in the
electroencephalogram (EEG) have shown to be a good in-
dicator to prognosticate the outcome for sudden CA pa-
tients surviving after hospital admission [4].

The interpretation of EEG currently relies on trained

medical experts such as Neurologists or Neurophysiol-
ogists. This procedure demands specialized skills, can
be time-intensive, and is susceptible to subjective judg-
ments [5]. Moreover, manual reviewing of the high vol-
ume of heterogeneous EEG data poses challenges for clin-
icians in delivering accurate prognostic information [6].
Novel prognostic methods are needed in order to advance
this field and Deep learning has shown success in various
medical fields as well as computer-based EEG analysis.
Tjepkema-Cloostermans et al. 2019 developed a CNN to
classify patient outcome from EEGs with an area under the
receiver operating characteristic (AUROC) between 0.85-
0.90 [7]. Zheng et al. 2021 showed that a multi-scale
CNN-RNN achieved an area under the receiver operating
characteristic (AUROC) curve in the range of 0.79-0.93 in
classifying patient outcome, depending on the recording
length used [8]. In this paper, we describe our approach in
George B. Moody PhysioNet Challenge 2023 [9], where
we use a single-scale CNN-RNN model to prognosticate
good versus poor outcomes for patients admitted to the
hospital after having a cardiac arrest. In contrast to pre-
vious work, we here use electrocardiograms (ECG), oxy-
gen saturation (SPO2) and electromyography (EMG) data
in addition to EEG.

2. Method

2.1. Data

In this study we used a dataset provided by the Interna-
tional Cardiac Arrest REsearch consortium (I-CARE) [10,
11], containing EEG, ECG, SPO2, EMG measurements,
as well as age, gender, return of spontaneous circulation
(ROSC) in minutes, OHCA (yes/no), Shockable Rhythm
(yes/no), targeted temperature management (TTM), pa-
tient outcome (good/poor), Cerebral Performance Cate-
gory (CPC) (1-5) of 1020 patients admitted to an inten-
sive care unit. The recordings were sampled at 500Hz and
ranged from 0 to 72 hours after sudden CA, depending on
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when the patient arrived at the hospital after the event of
sudden CA. The dataset was split into 60% training, 10%
validation, and 30% test, where only the training set was
shared publicly, while the validation and test set were with-
held by the organizers.

2.2. Preprocessing

To handle the large data size we downsampled the sam-
ple frequency of the recordings from 500Hz to 100Hz and
selected only 5 minutes of recording from each hour the
patient was monitored. In case the patient was discon-
nected from the monitoring system, a vector of 5 minutes
× 60 seconds × 100Hz of zeros was added.

2.3. Model

The model used in this study consists of three parts. The
first part was a CNN, used to extract spatial features from
the signals. The second part was a recurrent neural net-
work (RNN) used to extract temporal information from the
CNN features. Thirdly, a dense neural network (DNN),
taking tabular data such as age, gender, etc as input, was
merged with the final layer of the RNN. The CNN was
trained separately from the RNN and the DNN, as shown
in Figure 1, but after training the CNN was merged with
the RNN, forming a single model which we have named
MemoryInception.

Feature extractor
The feature extractor was built using a one-dimentional
Convolutional Neural Network, based on the Inception-
Time architecture [12]. Specifically, the network consists
of two Inception blocks, where a block is built from three
modules with a residual connection, each with four con-
volutional filters in turn. Features were extracted from 5-
minute recordings from EEG, ECG, EMG and SPO2 (52
signal channels).

Recurrent neural network
The recurrent neural network (RNN) was built using two
long short-term memory layers (128 and 72 input neurons),
taking h feature vectors of length 128, where h =number
of hours after the CA episode that was used in the training
scheme (either 12, 24, 48, 72).

Dense neural network
The dense neural network consists of a input layer of 6
neurons, equal to the number of variables; age, gender,
OHCA, ROSC, shockable rhythm, and TTM, as inputs.

2.4. Training

Feature extractor
During training of the feature extractor, the overall patient
outcome was used as the target for the supervised learning.
Sigmoid activation was used to classify poor outcome = 1

and good outcome = 0. Furthermore, binary cross-entropy
(BCE) was used as the loss function and ADAM as the
optimizer. The model was trained for 7 epochs using single
5-minute sequences of EEG, ECG, EMG and SPO2, from
each hour the patient was monitored, as input. The start
of the 5-minute recording where picked randomly if the
recording where >5 minutes. In cases where the recording
was <5 minutes, a tail of zeros equal to 5 − l, where l =
length of the current signal, was added to the end of the
signal. After training the CNN, the last layer was removed,
leaving a layer of 128 neurons as the last layer. The CNN
was then used to extract features from all available patient
recordings in the training data and stored them in patient-
wise feature stacks.

Recurrent and dense neural network
The RNN was trained based on the feature stacks from the
CNN, where each stack was h× 128. The final layer of
the RNN was merged with the final layer of the DNN and
the two models were trained simultaneously. The model
was trained for 50 epochs using BCE loss and ADAM op-
timization with patient outcome as the target.

Merged model
After training the CNN and the combined RNN and DNN
network, they were merged by wrapping the CNN in a
time-distributed layer and stacking it on top of the first
LSTM layer in the RNN model. The resulting model,
MemoryInception, was then used in the inference phase1.

2.5. Inference

The MemoryInception model was queried to provide
a patient-wise neurological outcome prediction. During
inference, one 5-minute sequence per hour of available
recordings h was selected from each patient. h was trun-
cated to 12, 24 and 48 hours in addition to the full dura-
tion of 72 hours, when running the algorithm on the orga-
nizer side. In addition to signals, patient’s age and gen-
der, as well as information about OHCA, ROSC, shock-
able rhythm, and TTM were used as input per patient. In
case of too short or missing recordings, these were either
zero-padded or replaced by zero-value arrays.

2.6. Evaluation

The performance metric, used to evaluate the model in
the challenge, was the true positive rate at a fixed false
positive rate of 0.05; referred to as the challenge score.
The high specificity is chosen to mitigate risk of stopping
treatment for patients who have a chance to recover from
CA.

1All code discussed in this paper are available here: https://github.com/
CardiOUS/PhysioNetChallenge2021-CNN
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Figure 1. An overview of how the models were trained. The left side shows the InceptionTime model (1), which was first
trained to predict patient outcomes from single 5-minute recordings. The trained InceptionTime model was then used to
extract features from all available 5-minutes sequences. Furthermore, the feature vectors were stacked together based on
patients and sorted from 0 to h after cardiac arrest. The feature vectors were then used to train the second model, which
combines a recurrent and a dense neural network. The recurrent part of the model takes h feature vectors per patient and the
dense neural network takes age, sex, time to return of spontaneous circulation (ROSC), targeted temperature management
(TTM), Out of hospital cardiac arrest (OHCA), Shockable Rhythm. The features of the recurrent part of the network and
the dense neural network were merged in the last layer and finally used to classify patient outcomes.

3. Results

The results of employing the proposed model to the
undisclosed validation and test set during the official phase
are shown in Table 3, as well as the results on the valida-
tion set during the unofficial phase. The model was also
validated on a hold-out subset (20%) of the training data in
the official phase and in the unofficial phase 5-fold cross-
validation. The partitioning in both the official and un-
official phases was done at patient level, ensuring that no
patient data was present in both the training and validation
data.

The training curves in figure 2 show the model perfor-
mance for each epoch of training in terms of BCE loss and
AUROC score on both the training and validation data dur-
ing training of the CNN and the merged DNN and RNN
model.

4. Discussion and Conclusion

In contrast to previous studies [8], and the results ob-
tained in the unofficial part of the challenge, our CNN-
RNN model, MemoryInception, did not accurately predict
neurological outcomes in patients with CA. A potential ex-
planation might be that the data in the unofficial part of
the challenges had better signal quality, than in the official

phase.
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Figure 2. Training curves from validation on a subset of
the training set, showing AUROC and loss during train-
ing of the convolutional neural network and the combined
dense neural network and recurrent neural network.

Furthermore, the training curves during internal valida-
tion on a subset of the training set indicate that the model
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Table 1. Challenge score achieved in the unofficial and official phase of the challenge. The results from each phase are
divided into results from a subset of the training data (Training), the validation scores (Validation) and the test scores (Test)

Phase Unofficial phase Official phase
Dataset Training Validation Training Validation Test
0-12 hours - 0.18 - 0.15 0.16
0-24 hours - 0.57 - 0.22 0.11
0-48 hours - 0.61 - 0.10 0.13
0-72 hours 0.45± 0.21 0.66 0.08 0.13 0.12

overfitted to the training data. In future research using
the MemoryInception architecture, it would be beneficial
to develop an algorithm to select the 5 minutes with the
best signal quality from each hour of recording. Further-
more, training both the feature extractor and RNN jointly
could potentially mitigate overfitting. However, this ap-
proach would require either a substantial amount of RAM
or a customized data loader and training scheme.

Moreover, substituting absent recordings with zero-
value vectors might have introduced inaccuracies in differ-
entiating between genuine patient signals and those from
individuals with significant brain damage. Future advance-
ments should focus on identifying signal characteristics
associated with patients exhibiting poor outcomes versus
good outcomes to effectively replace missing values with-
out introducing any biases.

In conclusion, our MemoryInception model showcases
some potential in predicting neurological outcomes for CA
patients by utilizing a combination of EEG, ECG, and
patient-specific data. However, further research is required
to address the problem of overfitting observed during train-
ing, and the handling of missing data; to increase perfor-
mance and clinical applicability.
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